
Chapter 8

PSI4EDUCATION: Free and Open-Source Programing
Activities for Chemical Education with Free and Open-Source

Software

D. Brandon Magers,1,* Victor H. Chávez,2 Benjamin G. Peyton,3 Dominic A. Sirianni,4

Ryan C. Fortenberry,5 and Ashley Ringer McDonald6

1Department of Chemistry & Physics, Belhaven University,
Jackson, Mississippi 39202, United States

2Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
3Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States

4Department of Chemistry, University of Richmond,
Richmond, Virginia 23713, United States

5Department of Chemistry & Biochemistry, University of Mississippi,
University, Mississippi 38677, United States

6Department of Chemistry & Biochemistry, California Polytechnic State University,
San Luis Obispo, California 93407, United States

*Email: bmagers@belhaven.edu.

Computational molecular science, including computational chemistry, programming, data science,
and machine learning, has become a cornerstone of chemistry research, but traditional,
undergraduate chemistry curricula spend little-to-no time developing these skills in early career
chemists. The most common best-case scenario has students using computational chemistry tools
with a few exercises in a physical chemistry course. Many degree programs have no exposure
whatsoever for students to using computational tools or programming. In either case, a large issue
precluding uptake of this medium as both a skill and educational tool is a matter of access to and
administration of quality hardware, user-friendly software packages, and correspondingly robust
student exercises. Additionally, computation can offer a “dry” alternative for a benefit wet laboratory
provides in chemical education: a means by which to reinforce conceptual learning through tangible
experience with the phenomena being studied. To this end, the PSI4EDUCATION community
utilizes the free and open-source PSI4 quantum chemistry package, Python and Jupyter Notebooks,
and the WEBMO graphical user interface to facilitate the growth and utilization of computational
molecular science in the classroom. Additionally, the community has pioneered the use of cloud-
based computing for student access, software hosting, and quantum chemistry program execution.
This promises to create a plug-and-play environment with little overhead work for the instructor
and costs below the level of most consumables in a traditional chemistry laboratory exercise.
PSI4EDUCATION is continuously growing our resource database through contributions from the
larger chemistry education community, and dozens of exercises have thus far been developed. In this
narrative, the utilization of programming via Jupyter Notebooks within chemistry education takes
focus. Examples of current activities discussed herein include analysis of bond breaking, exploration
of the Hartree-Fock procedure, and initial forays into machine learning applications to chemistry.

© 2021 American Chemical Society

D
ow

nl
oa

de
d

vi
a

D
A

E
M

E
N

 C
O

L
G

 o
n

Fe
br

ua
ry

 3
, 2

02
3

at
 2

0:
10

:1
4

(U
T

C
).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum
ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

mailto:bmagers@belhaven.edu

Introduction

Computing, and the technical skills needed to fully utilize it, are driving nearly every aspect
of modern commerce including research and development. However, few chemistry undergraduate
degree programs have been able to meet this need in their curricula due to the already heavy
knowledge load expected of competent B.S. chemistry majors ranging from proficiency in the four
(five) areas of chemistry to instrumentation utilization to generic laboratory safety (1). On top of this,
the standard undergraduate chemistry course sequence is largely built around historical traditions
and professional school demands (2–5). Hence, the current education of chemistry students is
providing them with 20th century skills for a 21st century workplace. Tools to shift this are emerging,
but educators must invent creative ways or utilize existing means developed by our professional
colleagues to fill this knowledge gap in computer skills, a gap that is growing exponentially with each
successive graduating class of chemistry majors.

Previous efforts to include exposure to computational tools within the chemistry curriculum
have largely originated within the physical chemistry community. This is partly due to the nature of
the subdiscipline itself as highly mathematical in nature and partly due to the bent of those who call
themselves physical chemists. MATLAB, Mathematica, and Microsoft Excel are far superior tools for
doing difficult computations involving integration by parts or considerations of a particular partition
function than paper and pencil work alone. Computational tools can also aid in bridging conceptual
connections across subdisciplines as students try to become proficient in the four (five) areas of
chemistry (6–9), as cross-discipline connections are important to overall undergraduate curricula
(5, 10–14). Quantum chemical computations built on compiled imperative programming languages
have also become nearly required companions for experimental research publications. While the
implementation of both types of computer skills (mathematical analysis and computational
chemistry) are now fairly routine within upper-level physical chemistry courses (15, 16), even these
skills within chemistry majors are slowly receding from the forefront of needs within the modern
chemical workforce (17).

The emerging need is for chemists of all disciplines to be able to construct their own
computational tools in order to push research forward (1, 18). This requires programming. The
physics community has required programming competency of its practitioners, even those who
consider themselves experimental physicists, for decades. Chemists cannot neglect this set of skills
any longer (19).

The analytical and experimental physical communities of chemists have been requiring graphical
programming (often through software such as LabVIEW) and Unix-based operating system
competency for some time now (20) in addition to the eternal need for programming within
theoretical chemistry. However, the experimental organic chemist must now be able to construct
numerical analyses in many cases in order for their data to be interpreted in novel ways (21).
Anecdotally, recent work by one of these authors provided a relatively simple tangent line analysis
program (22) to the organic solar cell community that promises to reduce analysis time and error
by as much as 5%, a major amount in a field with big dollar applications on the line. Had an
experimental, synthetic organic chemistry graduate student had these skills, such a need would not
have been left unmet for so long.

Such examples are myriad, but the largest barrier to providing generic chemistry students with
programming skills does not lie with desire on our part as educators. Time to cover such material in
class or laboratory, time to learn programming skills ourselves, and time to construct and evaluate

108
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

meaningful exercises is often in short supply. However, the PSI4EDUCATION team has been
developing these types of tools to produce 21st century skills in 21st century chemistry students.
These tools and exercises for the students do not require a significant overhaul of the existing
chemistry curriculum, but they should be implemented throughout the curriculum. Naturally, they
often start in physical chemistry, but they should not be limited to that subdiscipline.

PSI4EDUCATION

Figure 1. PSI4EDUCATION Logo.

PSI4EDUCATION (Figure 1) is the education and outreach arm of PSI4, a free, open-source,
quantum chemistry software package (23, 24). PSI4EDUCATION provides a suite of free, open-
source lab and classroom activities for use in courses across the undergraduate chemistry curriculum
(https://psicode.org/posts/psi4education/). These activities utilize PSI4 as a quantum chemistry
engine, PSI4NUMPY (an interactive quantum chemistry programming environment) (25), PSIAPI
Jupyter Notebooks (26), and WEBMO (27). A major goal of PSI4EDUCATION is to increase
student exposure to scientific programming and help students learn chemistry concepts through
computational resources. While the PSI4EDUCATION consortium has been previously discussed
in the literature (16), this particular chapter will focus on the developments made in the past six years,
specifically in the realm of including programming and computational problem solving for chemical
applications.

Some base knowledge Python scripting skills are required as a prerequisite for many of the
PSI4EDUCATION activities. Many B.S. chemistry majors do not take a programming course as a
requirement of their degree; instead, this base knowledge must also be incorporated into the current
curriculum. The Molecular Sciences Software Institute (MolSSI) (28) funded by the NSF provides
a series of free lessons on “Python Scripting for Computational Molecular Science (29)” which can
aid students in building the required prerequisite skills. Of note, lessons 1, 4, and 5 together cover all
the prerequisite skills needed for all the PSI4EDUCATION activities including assigning variables,
importing libraries, loops, logical expressions, etc. Additionally, the use of Jupyter Notebooks lowers
the barrier to getting the students comfortable in a coding environment. A Jupyter notebook is a
web application that allows the creation of documents with executable code, rich text formatting,
and widgets. Use of a Jupyter notebook removes the need for the student to worry about remote
connections and job submissions, and it lets the student focus more on learning chemistry through
the use of programming.

Another major goal of PSI4EDUCATION is to decrease barriers of chemistry educators
implementing computational educational resources in classrooms. Often, a chemistry department
does not have a faculty or staff member that can dedicate the time and energy needed to manage a

109
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

https://psicode.org/posts/psi4education/

server to host many traditional computational chemistry resources. This is especially true at primarily
undergraduate institutions (PUIs) and community colleges. PSI4EDUCATION utilizes many
partnerships and options to make implementing the activities as plug-and-play as possible without
the need of a dedicated, local server or workstation. Additionally, WEBMO and PSI4 can be installed
on Google Cloud, removing the need for any local maintenance at a minimal cost. For the PSIAPI
Jupyter Notebook activities, PSI4EDUCATION has partnered with the Chem Compute Science
Gateway (ChemCompute; https://chemcompute.org/) (30) to offer free computational resources
without the need to install or configure any software or hardware.

Figure 2. List of the currently available exercises organized by the framework used (WebMO and PSIAPI).
More details can be found on the PSI4 website (https://psicode.org/posts/psi4education/).

Through the PSI4EDUCATION PSIAPI activities utilizing Jupyter Notebooks, a breadth of
scientific programming experience can be exposed to students. As would also be expected in a
foundational programming course, students gain experience with program data types, logical
expressions, and data manipulation. However, in addition to these experiences, these activities also
include many computational science packages such as NUMPY, SciPy, Matplotlib (31), and scikit-
learn. All of this is couched within standard chemical applications giving students a more familiar
environment for developing their programming skills while working through these chemical
problems with new skills. A list of the currently available exercises is given in Figure 2; this delineates
which exercises use WEBMO and which exercises use PSIAPI. A complete list of the exercises

110
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

https://chemcompute.org/
https://psicode.org/posts/psi4education/

along with learning objectives and implementation details are available on the PSI4 website
(https://psicode.org/posts/psi4education/).

Example Activities

Three specific PSI4EDUCATION activities are highlighted which provide a means of teaching
programming within the chemistry curriculum. Each has been developed by different groups and
have been implemented in at least one instance. On the PSI4 website where the PSI4EDUCATION
materials are hosted, learning outcomes, time to complete the assignments, and other educational
metadata are available for any and all of the exercises provided. We begin this sampling of developed
exercises with bond breaking, one of the most fundamental processes in chemistry.

Bond Breaking

This activity introduces students to concepts intrinsic within diatomic molecular dissociation.
Namely, many theoretical models fail to predict the correct behavior of diatomics at long separation
distances, and thus, this PSI4EDUCATION activity investigates the bond-breaking reaction in the
H2 molecule. The exercise could be used in an advanced general chemistry course, a physical-organic
course, or physical chemistry course.

The exercise begins by introducing the PSIAPI via a set of single-point energy calculations. The
student then uses Python functions to generate multiple calculations and parse their results. For
example, running jobs for various bond distances simply requires using a loop in which a new line
replaces the separation between fragments. Beyond providing quick access to data, one of the most
appealing attributes of this activity is its focus on visualization despite being a programming-based
exercise. The exercise requires critical thinking about the orbitals. Immediately plotting the orbitals
is a critical element in understanding the differences in the calculations. The orbitals can be plotted
in various plotting libraries such as Matplotlib or Plotly (32) mentioned above. The addition of plots
turns a dry mathematical demonstration into an interactive and visually striking proof (Figure 3).
The MolSSI has recently developed a tutorial describing how to generate impactful and aesthetically
pleasing plots (33).

Figure 3. 6-31G** Potential Energy curves for H2 generated using Matplotlib.

111
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

https://psicode.org/posts/psi4education/

The student analyzes the plots and energies in order to determine differences in how bonds
may be represented. For example, Hartree-Fock and density functional theories model bonds in
different ways that are appropriate at the equilibrium geometry, but will produce spurious results for
longer internuclear distances. The student uses coupled-cluster theory to generate an exact result to
compare other methods against it. Restrictred and unrescrited references are introduced in order to
address the previously described unphysical behavior of the Hartree-Fock solution. A way to visualize
the dissociation problem is to plot the orbitals at the stretched geometry. This asymmetry is only
captured by the unrestricted model (34) (Figure 4). Instead of dealing with separate calculation and
visualization software, this activity lets the student do all the work in the same environment. The
tasks of generating atomic orbitals, adding them to generate particular solutions, and visualizing them
can be done in successive cells with ease. Furthermore, every parameter including the method of
calculation, basis set, and atoms used can be easily modified allowing the student to try different
settings and see the effects immediately. Tools like this are present in all of PSI4EDUCATION’s
activities, and they give the students firsthand exposure to every part of a calculation.

Figure 4. Alpha molecular orbital of the RHF and UHF solutions for the stretched H2 visualized using a)
Matplotlib and b) Moly (35), a molecular library built on top of Plotly.

Student Learning Outcomes

The instructor version of the exercise provides information about the activity scope, required
student prerequisite knowledge, an expected schedule, and student learning objectives (SLOs).
Upon completing this activity, students are expected to be able to:

112
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

1. Valuate different computational methods for bond breaking.
2. Compare restricted and unrescrited references.
3. Benchmark these results with respect to results from coupled-cluster theory.
4. Visualize molecular orbitals using plotting libraries.

Hartree-Fock Self-Consistent-Field Theory

Hartree-Fock theory and its self-consistent-field (SCF) formulation are the cornerstone of
wavefunction-based electronic structure theory, enabling understanding of both chemical bonding
and molecular structure in terms of chemically meaningful molecular orbitals constructed from a
linear combination of atomic orbitals (LCAO-MO). Despite the discussion of LCAO-MO theory
in an inorganic chemistry course, both the mathematical and technical details necessary to develop
Hartree-Fock theory and implement it into working computer code are generally considered to be
outside the scope of an undergraduate chemistry curriculum. However, by leveraging the interactive
Jupyter notebook programming environment, a dry laboratory exercise has been developed to
introduce the basics of HF theory and its implementation in the Python programming language,
which is accessible at the undergraduate level using PSIAPI and the PSI4NUMPY quantum
chemistry programming framework.

This activity, entitled “Hartree-Fock Self-Consistent-Field Theory,” is broken into three main
sections, comprised of both conceptual discussion and interactive exercises, which, taken together,
guide students through the theoretical and technical considerations necessary to implement a HF-
SCF code. This approach allows the activity to stand alone, with no need for students to complete
other activities as a prerequisite (even though PSI4EDUCATION does offer, e.g., a detailed activity
in linear algebra), as well as allowing for only certain sections to be assigned at the instructor’s
discretion. Below, each of these sections will be briefly discussed, with regards to their motivation
and content, before finally discussing the SLO for the activity as a whole.

Primer: The Hydrogen Atom & Hartree-Fock Basics

Aside from the technical details of the Hartree-Fock procedure itself, the need for approximate
computational methodologies is itself a conceptual hurdle that students must overcome. In order
to familiarize students with performing such computations, this exercise begins by referencing the
exact, quantum mechanical description of the hydrogen atom, compared with the energy computed
by the Hartree-Fock procedure as provided by PSI4. In this manner, the concept of an approximate
quantum chemistry approach is connected to the act of performing a computation with PSI4,
allowing students to reinforce dynamically their learning while introducing the HF-SCF approach.
Next, in order to implement a Hartree-Fock code, students must be familiar with the form of the
Hartree-Fock equations. While the derivation of these equations has been treated in significant detail
elsewhere (34), this is usually presented at the graduate level, and, as such, is beyond the scope of this
activity. Instead of focusing on the derivation, therefore, the SCF equations are directly presented
before spending time discussing the quantities which comprise them (e.g., the Fock matrix, F).
Finally, this section provides a “blueprint” for the rest of the exercise, which prompts students
to anticipate their learning, a key step in metacognition that has been shown to increase learning
retention and understanding (36, 37).

113
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

Figure 5. Brief overview of linear algebra concepts and Dirac notation in the Hartree-Fock activity.

Review of Mathematical Concepts

The largest challenge for students when learning Hartree-Fock theory, and indeed in the study
of quantum mechanics in general, is its mathematical complexity. In particular, Hartree-Fock theory
relies both on variational calculus for its derivation and linear algebra concepts for its self-consistent-
field formulation, with which most undergraduate chemistry majors will be unfamiliar. In order to
meet the need for students to have a sufficient working understanding of these mathematical tools to
fully engage with this activity, a review of relevant mathematical concepts is included. This includes
a brief discussion of normalization, orthogonality, and basis sets, as well as Dirac notation (Figure
5). Once these concepts and notation are introduced, students complete a few short exercises which
reinforce this conceptual knowledge with the skills of performing vector operations in Python using
the NUMPY library.

Even though Hartree-Fock is a two-particle theory, where all relevant quantities can be
represented as rank-2 arrays (i.e., matrices), the resulting matrix equations can be challenging to
conceptualize directly, and, in turn, implement in computer code, even for students who have had
formal training in linear algebra. This is especially true for the formulation of the Fock matrix,

where H is the one-electron core Hamiltonian matrix, and J, K are the Coulomb and exchange
matrices, respectively. To form the Coulomb and exchange matrices, tensor contractions
(generalized matrix-matrix products between two or more multidimensional arrays) must be
performed between the rank-4 electron repulsion integrals and the density matrix, D.

114
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

In order to simplify these equations for students with whom linear algebra may be unfamiliar,
the addition of another layer of abstraction is useful to the discussion of linear algebra: introducing
the Einstein summation convention for denoting tensor contractions. In the Einstein convention,
repeated indices are assumed to be contracted over, simplifying the notation for defining, e.g., J and
K.

On the surface, introducing this convention may seem to be a trivial simplification; however,
thanks to the NumPy library function, numpy.einsum(), tensor contractions written in the Einstein
summation convention can be directly translated from symbolic notation to executable computer
code with a single command.

This ease of translation between symbolic mathematical expression and computer code is the
heart of the PSI4NUMPY quantum chemistry programming framework, which is used heavily in this
exercise. Therefore, a brief primer on Einstein summation convention is included in this section so
that students are familiar with it in advance of its use below.

Hartree-Fock Self-Consistent-Field Procedure

After students’ understanding of mathematical and notational details has been reinforced in
the sections above, they are finally ready to move on to implementation of their own Hartree-Fock
program. This begins by using PSI4 through the PSIAPI application programming interface to read
in a molecule and relevant basic quantities, such as the atomic orbital basis set. Next, students
are guided through the use of PSIAPI and the examination of the atomic orbital (AO) basis set
through the real AO overlap matrix, S, in analogy to the analysis carried out above in the review of
linear algebra. Students are then prompted to verify that this “real” basis set is not orthonormal.
Students are guided to construct a transformation matrix which is used to orthogonalize the AO
basis set and simplify the Hartree-Fock equations into a genuine eigenvalue equation rather than a
pseudoeigenvalue equation. Once the basis set has been orthogonalized, the next step in the SCF
procedure is to build an initial guess for the Fock matrix. While many such guesses exist, the simplest
such quantity, the core Hamiltonian matrix, is utilized herein before diagonalizing this guess Fock
matrix to obtain guess orbitals and electron density. Next, the Coulomb and exchange matrices are
constructed using these guess orbitals before students compute the Hartree-Fock energy for their
guess wavefunction. Finally, students implement the SCF iterations using each of the previous steps
as a template, reinforcing their learning while simultaneously challenging them to think about the
iterative nature of solving the coupled Hartree-Fock equations.

115
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

Student Learning Outcomes

The instructor version of the exercise provides information about the activity scope, required
student prerequisite knowledge, an expected schedule, and SLOs. Upon completing this activity,
students are expected to be able to:

1. Recognize that the AO basis is not orthonormal and must be transformed.
2. Transform from one basis to another using a transformation matrix.
3. Recognize the iterative nature of the HF procedure.
4. Define convergence and use convergence criteria in a self-consistent procedure.
5. Compute MO energies and coefficients by diagonalizing the Fock matrix.

Machine Learning

In the six years since PSI4EDUCATION was first introduced, the use of machine-learning
(ML) applications in the physical sciences has increased exponentially (38–40). Naturally, chemists
have begun utilizing these techniques in increasingly complex and successful ways. While the
underpinnings of ML are fundamental concepts with which B.S. chemistry majors are undoubtedly
familiar, such as regressions and statistics, ML techniques are often seen as “magic” by the broader
community. This is usually due to a combination of esoteric vocabulary and a liberal application
of pre-built scientific software packages. As with many mathematical concepts, the understanding
afforded by live, hands-on experience cannot be overstated. The complicated workflows involved
in state-of-the-art ML research preclude the possibility of reproducing these models by hand in an
undergraduate setting. With guidance, however, a programming package such as scikit-learn (41)
offers a quick way to both rationalize and experiment with basic ML models.

The ML activity offered in PSI4EDUCATION, titled “Machine-learning applications in
computational chemistry,” does not aim to teach a student all of the aspects of ML. Instead, the
focus is on teaching the student how to build, evaluate, and refine a ML model. One case study
employed in the exercise is in predicting the potential energy surface (PES) of the symmetric stretch
in a water molecule. Through this, the concepts of training sets, linear regression, and molecular
representations are introduced, while scikit-learn (a Python module which implements a wide range
of ML techniques) handles the optimization of the model parameters. A particular focus is given
to the generation of molecular representations, which encode the pertinent molecular information
and serve as the input to the ML model, which is an often overlooked detail (42, 43). The student
is presented with questions regarding the form and function of the Coulomb matrix representation
(44), show below. This simple two-particle representation requires only the atomic numbers (Z) and
bond distances (rij) between every pair of atoms.

By training a simple linear regression model (which is not expected to perform admirably),
the student is given an example of one of the key ideas in ML research: testing and improving
upon a model. Additional flexibility and non-linearity are achieved through the popular kernel ridge
regression (KRR) model, where the representations are used to generate a covariance matrix called a
kernel (specifically, the radial basis function kernel) (45, 46). This model reproduces the surface to
within milliHartree accuracy (Figure 6).

116
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

Figure 6. H2O symmetric stretch PES, calculated using ab initio simulation (“Truth”) and a KRR model
(“ML”).

Once again, the use of scikit-learn allows the student to bypass the linear algebra and
implementation of the method and optimization routines needed to switch to this model, requiring
only the understanding that a non-linear model with more flexibility is expected to perform better in
an ML application. Armed with an effective routine for learning the symmetric stretch, the student
is tasked with repeating the process for predicting the hypersurface of simultaneous O–H stretching.
The student is encouraged to decide their own method for choosing training points and evaluate their
performance relative to the canonical Hartree-Fock surface, which is computed for comparison.

Finally, a larger-scale application of the KRR model is demonstrated. Atomization energies
are taken from a subset of the ANI-1 dataset (47, 48), a collection of calculated thermochemical
data spanning more than 50,000 small organic molecules in over 20 million conformations. The
students are asked to apply the KRR model to predict the atomization energies of some of these
molecules from a set of pre-computed Coulomb matrices. This exercise is adapted from the ML
tutorial provided by the MolSSI for the QCArchive project (49) and constitutes an example of a
“real-world” scenario. In the PSI4EDUCATION exercise, the student can see the organization of
a large database, as well as probe the chemical diversity of the dataset through visualization inside
the Jupyter notebook. Performance is plotted in a violin plot, and the student is asked to judge the
efficacy of the model based on the reported error statistics.

Student Learning Outcomes

This exercise should serve to lower the barrier for introducing students to different ML
applications in chemistry. The activity is intended for students familiar with the concept of
atomization energies and the general PSI4EDUCATION requirements, but a deep understanding of
the underlying theoretical chemistry is not required by design. This makes the activity appropriate for
any undergraduate students beyond the general chemistry level but may include advanced sections
of general chemistry. The instructor version of the exercise provides information about the activity

117
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

scope, required student prerequisite knowledge, an expected schedule, and SLOs. Upon completing
this activity, students are expected to be able to:

1. Summarize basic ML concepts, such as training sets and parameter optimization.
2. Design geometry-based molecular representations.
3. Apply basic ML techniques across two- and three-dimensional potential energy surfaces.
4. Utilize large databases for the prediction of chemical properties.
5. Relate how the application of ML can facilitate chemical research and development.

Conclusions

PSI4EDUCATION promises to develop students’ programming skills as a tool for reinforcing
chemical concepts and giving them new skills to solve chemical problems. Additionally, the exercises
developed by this group lower the barrier to implementation since the educator does not have to
develop these activities in isolation. Additionally, contributions from the education community are
welcome in order to expand the footprint of PSI4EDUCATION. The described activities in this
narrative highlight principle chemical modeling (bond breaking and Hartree-Fock) and emerging
trends in chemical research (machine learning). However, these can be easily applied to organic
chemistry (21), analytical chemistry (6), and even general chemistry (16). While the core team is
continually adding to the database of exercises, the culture of the PSI4 community at large is one
of inclusion, external contribution & development, and provision of open-source materials. Hence,
PSI4EDUCATION is also a platform for development and distribution of educators’ novel ideas
for cutting-edge chemistry education. PSI4EDUCATION has evolved since its inception nearly a
decade ago, and further developments are welcome with new ideas from educators with expertise
across the chemical sciences.

Acknowledgments

The authors wish to acknowledge the other contributors to the PSI4EDUCATION effort. These
include (but are not limited to): Dr. Tricia D. Shephard of the POGIL Project, Dr. Lori Burns of
the Georgia Institute of Technology, Dr. Matthew Kennedy, Dr. Rollin King of Bethel University
(MN), Dr. Beulah Narendrapurapu of Georgia Southern University, Dr. Rafael Quirino of Georgia
Southern University, and Dr. Konrad Patkowski of Auburn University.

RCF wishes to acknowledge funding from the National Science Foundation through NSF grant
OIA-1757220, from NASA through NASA grant NNX17AH15G, and start-up funds provided by
the University of Mississippi. He would also like to acknowledge Jax D. Dallas of the University of
Mississippi for useful insights provided in critiquing many assignments.

VHC was supported by a fellowship from The Molecular Sciences Software Institute under NSF
grant OAC-1547580. He would also like to acknowledge the helpful comments provided by Dr.
Lyudmila Slipchenko of Purdue University about the bond-breaking activity.

BGP acknowledges support from the US Department of Energy (DOE) Office of Science, Office
of Basic Energy Sciences, Computational Chemical Sciences (CCS) Research Program under work
proposal number AL-18-380-057, as well as the Graduate School Doctoral Assistantship Program
from the Virginia Tech College of Science.

DAS wishes to gratefully acknowledge financial support from Bristol Myers Squibb, the U.S.
National Science Foundation RUI Program (Grant No. CHE-1800014), the Donors of the
American Chemical Society Petroleum Research Fund, the Floyd D. and Elisabeth S. Gottwald
Endowment, and the University of Richmond.

118
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

References

1. Neiles, K. Y.; Mertz, P. S. In Integrating Professional Skills into Undergraduate Chemistry
Curricula; 2020; pp 3–15.

2. Clark, R. W. The Structure of Chemistry. J. Chem. Educ. 1999, 76, 1612.
3. Cooper, M. The Case for Reform of the Undergraduate General Chemistry Curriculum. J.

Chem. Educ. 2010, 87, 231–232.
4. Cooper, M.; Klymkowsky, M. Chemistry, Life, the Universe, and Everything: A New

Approach to General Chemistry, and a Model for Curriculum Reform. J. Chem. Educ. 2013,
90, 1116–1122.

5. Schaller, C. P.; Graham, K. J.; Johnson, B. J.; Fazal, M. A.; Jones, T. N.; McIntee, E. J.;
Jakubowski, H. V. Developing and Implementing a Reorganized Undergraduate Chemistry
Curriculum Based on the Foundational Chemistry Topics of Structure, Reactivity, and
Quantitation. J. Chem. Educ. 2014, 91, 321–328.

6. Pemberton, A. T.; Magers, D. B.; King, D. A. Integrated TGA, FTIR, and Computational
Laboratory Experiment. J. Chem. Educ. 2019, 96, 132–136.

7. Rodríguez Ortega, P. G.; Montejo, M.; Valera, M. S.; López González, J. J. Studying the Effect
of Temperature on the Formation of Hydrogen Bond Dimers: A FTIR and Computational
Chemistry Lab for Undergraduate Students. J. Chem. Educ. 2019, 96, 1760–1766.

8. Perri, M. J. Online Data Generation in Quantitative Analysis: Excel Spreadsheets and an Online
HPLC Simulator Using a Jupyter Notebook on the Chem Compute Web Site. J. Chem. Educ.
2020, 97, 2950–2954.

9. Arrabal-Campos, F. M.; Cortés-Villena, A.; Fernández, I. Building “My First NMRviewer”:
A Project Incorporating Coding and Programming Tasks in the Undergraduate Chemistry
Curricula. J. Chem. Educ. 2017, 94, 1372–1376.

10. Bruck, L. B.; Towns, M.; Bretz, S. L. Faculty Perspectives of Undergraduate Chemistry
Laboratory: Goals and Obstacles to Success. J. Chem. Educ. 2010, 87, 1416–1424.

11. Bretz, S. L.; Fay, M.; Bruck, L. B.; Towns, M. H. What Faculty Interviews Reveal about
Meaningful Learning in the Undergraduate Chemistry Laboratory. J. Chem. Educ. 2013, 90,
281–288.

12. Talanquer, V. Chemistry Education: Ten Facets To Shape Us. J. Chem. Educ. 2013, 90,
832–838.

13. Levy, S. T.; Wilensky, U. Crossing Levels and Representations: The Connected Chemistry
(CC1) Curriculum. J. Sci. Educ. Technol. 2009, 18, 224–242.

14. Levy, S. T.; Wilensky, U. Students’ Learning with the Connected Chemistry (CC1)
Curriculum: Navigating the Complexities of the Particulate World. J. Sci. Educ. Technol. 2009,
18, 243–254.

15. Jones, M. B. Molecular Modeling in the Undergraduate Chemistry Curriculum. J. Chem. Educ.
2001, 78, 867.

16. Fortenberry, R. C.; McDonald, A. R.; Shepherd, T. D.; Kennedy, M.; Sherrill, C. D.
PSI4Education: Computational Chemistry Labs Using Free Software. In The Promise of
Chemical Education: Addressing our Students’ Needs; Daus, K., Rigsby, R., Eds.; American
Chemical Society, Oxford University Press: Washington, DC, 2015; pp 85–98.

119
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

17. Teles dos Santos, M.; Vianna, A. S., Jr.; Le Roux, G. A. C. Programming Skills in the Industry
4.0: Are Chemical Engineering Students Able to Face New Problems? Educ. Chem. Eng. 2018,
22, 69–76.

18. McDonald, A. R.; Hagen, J. P. Beyond the Analytical Solution: Using Mathematical Software
To Enhance Understanding of Physical Chemistry. In Using Computational Methods to Teach
Chemical Principles; Grushow, A., Reeves, M. S., Eds.; American Chemical Society:
Washington, DC, 2019.

19. Weiss, C. J. Scientific Computing for Chemists: An Undergraduate Course in Simulations, Data
Processing, and Visualization. J. Chem. Educ. 2017, 94, 592–597.

20. Tan, S. W. B.; Naraharisetti, P. K.; Chin, S. K.; Lee, L. Y. Simple Visual-Aided Automated
Titration Using the Python Programming Language. J. Chem. Educ. 2020, 97, 850–854.

21. Esselman, B. J.; Hill, N. J. Integrating Computational Chemistry into an Organic Chemistry
Laboratory Curriculum Using WebMO. In Using Computational Methods to Teach Chemical
Principles; Grushow, A., Reeves, M. S., Eds.; American Chemical Society: Washington, DC,
2019.

22. Wallace, A. M.; Curiac, C.; Delcamp, J. H.; Fortenberry, R. C. Accurate Determination of the
Onset Wavelength (Λonset) in Optical Spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2021,
265, 107544.

23. Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.;
Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; Leininger,
M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F., III; King, R. A.; Valeev, E.
F.; Sherrill, C. D.; Crawford, T. D. PSI4: An Open-Source $Ab\ Initio$ Electronic Structure
Program. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 556–565.

24. Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; Deprince III, A. E.;
Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Remigio, R. Di; Richard, R. M.; Gonthier,
J. F.; James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B. P.;
Verma, P.; Schaefer III, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.; Evangelista, F. A.;
Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-Source Electronic Structure
Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory
Comput. 2017, 13, 3185–3197.

25. Smith, D. G. A.; Burns, L. A.; Sirianni, D. A.; Nascimento, D. R.; Kumar, A.; James, A.
M.; Schriber, J. B.; Zhang, T.; Zhang, B.; Abbott, A. S.; Berquist, E. J.; Lechner, M. H.;
Cunha, L. A.; Heide, A. G.; Waldrop, J. M.; Takeshita, T. Y.; Alenaizan, A.; Neuhauser, D.;
King, R. A.; Simmonett, A. C.; Turney, J. M.; Schaefer, H. F.; Evangelista, F. A.; DePrince,
A. E.; Crawford, T. D.; Patkowski, K.; Sherrill, C. D. Psi4NumPy: An Interactive Quantum
Chemistry Programming Environment for Reference Implementations and Rapid
Development. J. Chem. Theory Comput. 2018, 14, 3504–3511.

26. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.;
Hamrick, J.; Grout, J.; Corlay, S.; Ivanov, P.; Avila, D.; Abdalla, S.; Willing, C.; development
team, J. Jupyter Notebooks - a Publishing Format for Reproducible Computational Workflows.
In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Loizides, F.,
Scmidt, B., Eds.; IOS Press, 2016; pp 87–90.

27. Schmidt, J. R.; Polik, W. F. No Title. 2020.

120
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

28. Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J. A.; Pritchard, B.; Smith,
D. G. A.; Altarawy, D.; Saxe, P.; Clementi, C.; et al. Perspective: Computational Chemistry
Software and Its Advancement as Illustrated through Three Grand Challenge Cases for
Molecular Science. J. Chem. Phys. 2018, 149, 180901.

29. Ringer McDonald, A.; Nash, J. Python Data and Scripting Workshop for Computational
Molecular Scientists. Github 2020, https://github.com/MolSSI-Education/python_
scripting_cms.

30. Perri, M. J.; Akinmurele, M.; Haynie, M. Chem Compute Science Gateway: An Online
Computational Chemistry Tool. In Using Computational Methods to Teach Chemical Principles;
Grushow, A., Reeves, M. S., Eds.; American Chemical Society: Washington, DC, 2019.

31. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. & Eng. 2007, 9, 90–95.
32. Collaborative Data Science. Plotly Technologies Inc.: Montreal, QC 2015.
33. Nash, J. Scientific Visualization Using Python. Github 2021, https://github.com/MolSSI-

Education/python-visualization.
34. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Introduction to Advanced Electronic

Structure Theory; Courier Corporation, 1996.
35. Chávez, V. H. Moly. Molecular Visualization in Jupyter. Github 2021, https://github.com/

VHchavez/moly.
36. Holton, D.; Clarke, D. Scaffolding and Metacognition. Int. J. Math. Educ. Sci. Technol. 2006,

37, 127–143.
37. Tanner, K. D. Promoting Student Metacognition. CBE Life Sci. Educ. 2012, 11, 113–120.
38. Haghighatlari, M.; Hachmann, J. Advances of Machine Learning in Molecular Modeling and

Simulation. Curr. Opin. Chem. Eng. 2019, 23, 51–57.
39. Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W. Deep Learning for Molecular

Design—a Review of the State of the Art. Mol. Syst. Des. Eng. 2019, 4, 828–849.
40. Noé, F.; Tkatchenko, A.; Müller, K.; Clementi, C. Machine Learning for Molecular

Simulation. Annu. Rev. Phys. Chem. 2020, 71, 361–390.
41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;

Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher,
M.; Perrot, M.; Duchesnay, E. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res.
2011, 12, 2825–2830.

42. Kammeraad, J. A.; Goetz, J.; Walker, E. A.; Tewari, A.; Zimmerman, P. M. What Does the
Machine Learn? Knowledge Representations of Chemical Reactivity. J. Chem. Inf. Model.
2020, 60, 1290–1301.

43. Peyton, B. G.; Briggs, C.; D’Cunha, R.; Margraf, J. T.; Crawford, T. D. Machine-Learning
Coupled Cluster Properties through a Density Tensor Representation. J. Phys. Chem. A 2020,
124, 4861–4871.

44. Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of
Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 2012, 108, 58301.

45. Rasmussen, C. E.; Williams, C. K. I. Gaussian Processes for Machine Learning; The MIT Press,
2006.

46. Murphy, K. P. Machine Learning: A Probabilistic Perspective; The MIT Press, 2012.

121
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

https://github.com/MolSSI-Education/python_scripting_cms
https://github.com/MolSSI-Education/python_scripting_cms
https://github.com/MolSSI-Education/python-visualization
https://github.com/MolSSI-Education/python-visualization
https://github.com/VHchavez/moly
https://github.com/VHchavez/moly

47. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An Extensible Neural Network Potential with
DFT Accuracy at Force Field Computational Cost. Chem. Sci. 2017, 8, 3192–3203.

48. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A Data Set of 20 Million Calculated off-
Equilibrium Conformations for Organic Molecules. Sci. Data 2017, 4, 170193.

49. Smith, D. G. A.; Altarawy, D.; Burns, L. A.; Welborn, M.; Naden, L. N.; Ward, L.; Ellis,
S.; Crawford, T. D. The MolSSI QCArchive Project: An Open-Source Platform to Compute,
Organize, and Share Quantum Chemistry Data. ChemRxiv 2020.

122
 Ringer McDonald and Nash; Teaching Programming across the Chemistry Curriculum

ACS Symposium Series; American Chemical Society: Washington, DC, 2021.

	Teaching Programming across the Chemistry Curriculum
	ACS Symposium Series1387
	Teaching Programming across the Chemistry Curriculum
	Library of Congress Cataloging-in-Publication Data

	Foreword
	Preface
	Teaching Programming across the Chemistry Curriculum: A Revolution or a Revival?
	How Faculty with Minimal Programming Experience Implemented Jupyter Notebooks in Physical and General Chemistry Courses
	Hiding the Vegetables: Teaching Programming to Chemists as a Professional Skill
	Learning Programming through Chemistry in a First-Year Scientific Computing Course
	Introducing Students to Scientific Computing in the Laboratory through Python and Jupyter Notebooks
	The Compute-to-Learn Pedagogy and Its Implementation in the Chemistry Curriculum
	Integrating Programming to Reinforce Quantum Mechanical Principles in Physical Chemistry
	PSI4EDUCATION: Free and Open-Source Programing Activities for Chemical Education with Free and Open-Source Software
	Integrating Python into an Undergraduate Mathematics for Chemists Course
	Teaching Computer-Aided Drug Design Using TeachOpenCADD
	Coding, Software Engineering, and Molecular Science − Teaching a Multidisciplinary Course to Chemistry Graduate Students
	Editors’ Biographies
	Indexes

	Indexes
	Author Index
	Subject Index
	Preface
	1

	Teaching Programming across the Chemistry Curriculum: A Revolution or a Revival?
	Introduction
	Best Practices in Software Development
	Overview of Relevant Literature
	Overview of the Chapters
	Conclusion
	References
	2

	How Faculty with Minimal Programming Experience Implemented Jupyter Notebooks in Physical and General Chemistry Courses
	Minimal Programming Background
	Activities That Facilitated Adoption
	Figure 1. First executable code cell in “Thermodynamic Surfaces” CGI required students to change the volume and temperature values and shows the significant amount of scaffolding provided to novice programmers in the initial Python exercises used in the course. See Jupyter Notebook: https://github.com/gracestokes/SCUthermodynamics/.

	Key Considerations for Nonexperts Adopting Python for the First Time
	Figure 2. List of learning objectives for each CGI that was used in the author’s thermodynamics course in Winter 2021. Find Jupyter Notebooks at https://github.com/gracestokes/SCUthermodynamics/.
	Figure 3. Actual paper/pencil midterm question used by the author required students to know Carnot Cycle equations and how to write Python code with correct syntax.
	Figure 4. Actual final exam question used by the author required students to combine chemistry knowledge and Python coding with minimal scaffolding.

	Logistical Challenges of Getting Started
	Figure 5. In 2019 and 2020, thermodynamics students completed CGIs on personal laptops in the lecture hall and answered pre- and postclass “Pause for Analysis” questions at home.

	CGIs Were Altered Due to Remote Instruction Methods
	Changing CGIs for Google Colaboratory Platform
	Noncomputational Chemists Implemented Kinetics Exercise for General Chemistry Labs
	Figure 6. A stand-alone Jupyter Notebook written by the author utilized the Google Colaboratory platform was completed by 152 general chemistry students at Santa Clara University. Executable code can be found at https://github.com/gracestokes/SCUgenchem.

	Changes Required for Diverse General Chemistry Student Audience
	Figure 7. The exercise used in honors general chemistry course included detailed descriptions of basic Python vocabulary (TOP) while the version used in second-term general chemistry required less reading and utilized terms that students were familiar with, such as prelab and postlab questions instead of “Pause for Analysis” questions (BOTTOM).
	Figure 8. Example pre-lab quiz that was completed on the course management website for second-term general chemistry students.
	Figure 9. Lengthy Python code was written with numerous detailed comments to allow students with deeper interest in coding to learn how the code works while still accommodating the average general chemistry student’s time constraints.

	Student Feedback and Representative Student Reflections
	Figure 10. Extra credit exercise challenged general chemistry students who had coding background and interest beyond the basics that the majority of students had time or patience for. Executable code can be found at https://github.com/gracestokes/SCUgenchem.

	Final Observations
	Acknowledgments
	Funding
	References
	3

	Hiding the Vegetables: Teaching Programming to Chemists as a Professional Skill
	Introduction
	Introduction to R Programming
	Getting New Users Started with R
	The R Interface
	Figure 1. Examples of fundamental R operations with comments—lines with a leading # indicate lines that will not be run and are comments for the user. The <- is the assignment arrow and connects a term or terms with the letter or phrase at the beginning of the line. For example, in line 2 ‘x’ is assigned a value of two and in line 12, “names” is assigned the values enclosed by c(), which combines values into a single unit. The structure in line 12 is called a vector. Data frames can be constructed from vectors, as shown in lines 16 and 17. Named values, including vectors, can be used in math functions such as mean (Line 22), median (Line 24), and standard deviation (Line 26).

	Data Organization in R
	Plotting Data with the ggplot2 Package
	Figure 2. Plotting data in ggplot2 and transforming the code. Two plots created in the ggplot2 package along with the code. Geom lines define the type of plot, and the information inside of aes() indicates the plotting variables (lines 24, 26, 45, and 46 show examples). Scale lines define the axes range, and lines with labs set the axis labels. The lines with theme define the text size, font, color, and emphasis of axis labels and can control other factors like the background color. Data can also be manipulated within the ggplot call. The top plot and code show the data directly from the data frame, while the lower plot and code show the same data in double reciprocal format. The actual code is the same for both plots except for lines 45, 46, and 54, where a 1/ is added to the variable definitions. Without replotting, mathematical transformations of the data facilitate reproducible figures and reduce the need to create new code for every new figure. Lines 1-19, which construct the data and fit the data, are not shown for simplicity. Complete code is available at https://osf.io/9e3cu/.

	Example Activity Visualizing Data
	Figure 3. Changing ggplot2 code to improve communication of data; code and plots of Table 2 from Hershko, et al. 13 Lines 11-14 correspond to the left plot, lines 16-34 correspond to the middle plot, and lines 37-60 produce the right plot. Students are initially provided with just the left plot and asked to explore plot customization in ggplot2 to improve data communication. The middle and right plots are offered as examples, however, student results will vary, and the diversity of student plots can spur discussion of best practices.

	Example Activity in Finding Reliable Answers to Code Questions
	Conclusions
	Acknowledgments
	References
	4

	Learning Programming through Chemistry in a First-Year Scientific Computing Course
	Introduction
	Methods − Code Examples
	Example 1: Data Access and Sort by Molar Mass
	Figure 1. Name, formula, and molar mass of 10 polyprotic acids. The acids are sorted by molar mass.

	Example 2: Molecular Formula Quiz Applet
	Figure 2. A do-while loop programmed as a molecular formula quiz. The window is reset after every incorrect input and prompts for the answer until the supplied answer is correct. Graphics and data from Wolfram Language™ and Mathematica® www.wolfram.com.

	Example 3: Periodic Trends in Properties of Metals
	Figure 3. Atomic radius of the first 54 elements in the periodic table. This is useful to highlight the trend of atomic radius decreasing from left to right across a period.

	Example 4: Comparison of Two Trends in Periodic Properties
	Figure 4. First ionization energies of the alkali metals and the second-row elements. The alkali metals are represented on the left Y-axis and the second-row elements on the right Y-axis. The trends are plotted on the same figure for easier comparison.

	Example 5: Creating a Word Cloud
	Figure 5. Word cloud of text from Chapter 13 Chemical Equilibria from Openstax textbook “Chemistry 2e”. The size of the words reflects their occurrence in the text.

	Example 6: Molecular Structure Representation
	Figure 6. (a)User-controlled window displaying the molecular structure and formula of various simple chemicals. The user selects the name and one property to be displayed. (b) User-controlled window displaying general properties of the first 54 elements in the periodic table. This can also be setup as an animation to cycle through the atomic numbers.

	Example 7: Generating Stoichiometry Problems
	Figure 7. Mass to moles conversion app. The left part shows the user entering -4 and the form validation rejecting that input with a message. On the right, a successful execution with five problems and their answers is shown. Graphics and data from Wolfram Language™ and Mathematica® www.wolfram.com.

	Results & Discussion
	Conclusions
	Acknowledgments
	References
	5

	Introducing Students to Scientific Computing in the Laboratory through Python and Jupyter Notebooks
	Introduction
	Figure 1. The Jupyter notebook is structured around code cells containing live code and markdown cells which contain text, equations, and images. The output of code cells appear directly below the code cells and can include values, text, images, and plots.
	Figure 2. The Jupyter notebook markdown cell before rendering showing the use of markdown and html for text formatting and MathJax for equation formatting.
	Figure 3. A screenshot of a Jupyter notebook with instructions and an example of how to use a novel Python function from the SciPy library is provided above a blank code cell for students to input their own code.

	Stochastic Radiation Simulations
	Calculate Entropy of a Substance
	Figure 4. Plot of Cp/T versus T for H2S at temperatures 20 to 298 K.

	Real Gas Curve Fitting
	Figure 5. Left: Fit of carbon dioxide P-V data at 150 °C; the ideal gas law is also plotted. Right: Plot of the residuals of the data with the fitted van der Waals equation and the ideal gas law. The van der Waal equation reproduces the data much better at low molar volumes.

	Conclusion
	References
	6

	The Compute-to-Learn Pedagogy and Its Implementation in the Chemistry Curriculum
	Introduction to Compute-to-Learn
	Main Components of the Compute-to-Learn Pedagogy
	Projects Initiated by Students
	Peer Learning
	Programming as a Tool for Learning
	Publishable Deliverable for Teaching
	Description of C2L Implementation at a Large Research University
	Figure 1. Excerpts from the Mathematica tutorial from (A) the first day, and (B) the last day of the tutorial. Printed with permission from Wolfram Mathematica 2. (www.wolfram.com) Unpublished notebooks.
	Figure 2. An example of a prompt for a demonstration on FRET (2526). Subfigure 2 reprinted from Methods in Enzymology, 549, K. C. Suddala & N. Walter, Riboswitch Structure and Dynamics by smFRET Microscopy, 343-373, Copyright 2014, with permission from Elsevier 26.

	Outcomes of C2L Implementation at a Large Research University
	Challenges and Corresponding Adaptations at a Large Research University
	Adaptations of C2L Implementation at Various Types of Institutions
	Considerations for Implementing at a Small Liberal Arts College
	Challenges and Corresponding Adaptations at a Small Liberal Arts College
	Figure 3. Example of assignment prompt for student notes on a potential demonstration topic.
	Figure 4. Example of Mathematica notebook portion for the first problem set. Printed with permission from Wolfram Mathematica 2. (www.wolfram.com) Unpublished notebooks.

	Considerations for Implementing at a Mid-size Primarily Undergraduate Institution
	Figure 5. Coding example shown as raw code (top) and as a detailed Jupyter notebook (bottom).
	Figure 6. Flowchart showing the collaborative process for code and notebook review in Github.

	Considerations for Implementing at a Two-Year Community College
	Figure 7. Example notebook assignment for master’s level theoretical chemistry course.

	Conclusions
	Acknowledgments
	References
	7

	Integrating Programming to Reinforce Quantum Mechanical Principles in Physical Chemistry
	Abstract
	1 Overview of the Course and Rationale for the Stern-Gerlach Simulator
	Figure 1. Schematic illustration of the third elaboration on the Stern-Gerlach experiment in which electrons undergo alternating measurement of incompatible observables (here nicknamed “color” and “hardness”), revealing the fundamental uncertainty of those observables.

	2 Stern-Gerlach Experiment Applied to the Particle in a Box Model System
	Figure 2. The 3 distinct stages of the Stern-Gerlach simulation within the context of the particle in a box model system. In stage (a) the system undergoes free evolution from the initial state (in this case, a Gaussian wave packet). Stage (b) commences when the position of the particle is measured and the wavefunction collapses into an eigenfunction of the position operator (approximated by a narrow Gaussian function). Stage (c) commences when the energy is measured and the wavefunction collapses into an energy eigenstate.

	3 Teaching Programming
	What Discourages Students in Programming?
	Interventions That Increase Motivation in Programming
	Principles for Instructors to Apply Motivational Interventions in Teaching
	Principle 1: Proceduralize Discovery
	Principle 2: Normalize Struggles in Learning to Code
	Principle 3: Increase Inclusion in Classrooms
	Principle 4: Visualize the Positive Outcomes Associated with Successful Learning
	Principle 5: Make the Learning Process Concrete with Clear Actions and Strategies
	Implementation of Teaching Programming in CHEM 3160
	Onboarding Phase
	Planning Phase
	Execution Phase
	Presentation Phase
	4 Example Code
	Acknowledgments
	References
	8

	PSI4EDUCATION: Free and Open-Source Programing Activities for Chemical Education with Free and Open-Source Software
	Introduction
	PSI4EDUCATION
	Figure 1. PSI4EDUCATION Logo.
	Figure 2. List of the currently available exercises organized by the framework used (WebMO and PSIAPI). More details can be found on the PSI4 website (https://psicode.org/posts/psi4education/).

	Example Activities
	Bond Breaking
	Figure 3. 6-31G** Potential Energy curves for H2 generated using Matplotlib.
	Figure 4. Alpha molecular orbital of the RHF and UHF solutions for the stretched H2 visualized using a) Matplotlib and b) Moly 35, a molecular library built on top of Plotly.

	Student Learning Outcomes
	Hartree-Fock Self-Consistent-Field Theory
	Primer: The Hydrogen Atom & Hartree-Fock Basics
	Figure 5. Brief overview of linear algebra concepts and Dirac notation in the Hartree-Fock activity.

	Review of Mathematical Concepts
	Hartree-Fock Self-Consistent-Field Procedure
	Student Learning Outcomes
	Machine Learning
	Figure 6. H2O symmetric stretch PES, calculated using ab initio simulation (“Truth”) and a KRR model (“ML”).

	Student Learning Outcomes
	Conclusions
	Acknowledgments
	References
	9

	Integrating Python into an Undergraduate Mathematics for Chemists Course
	Introduction and Motivation
	Course Design
	Figure 1. (top) Example question posted to Piazza forum and (bottom) Class statistics from Piazza class forum – all names have been redacted.
	Figure 2. Webpage for automatically generating custom links to open Jupyter notebooks using nbgitpuller.
	Figure 3. Histogram of initial student survey, illustrating 25 of 36 students responding had no prior programming experience, and only 5 students responding had prior Python experience (responses 3 and 4).
	Figure 4. Histograms of initial student survey, reflecting interest in chemistry, mathematics, and programming.

	Course Material
	Figure 5. Example of instructional notebook header, including relevant textbook chapter, and key learning objectives for each session.
	Figure 6. Example of integrated instructional material (central difference formula) and code (with grey background) for numeric derivatives. Key tip is indicated with green background.
	Figure 7. Example of Maclaurin and Taylor series, using matplotlib to illustrate the expansion and sympy to automatically derive the series expansion using “f.series()”.
	Figure 8. Examples of interactive code and plots from the Lotka-Volterra model (left) over time and (right) as a phase plot. Students were to find an equilibrium point.
	Figure 9. (top) Example of a fast Fourier transform (FFT) recovering two signals from a composite wave. Students were to construct new composite sine / cosine functions and demonstrate the use of FFT and inverse FFT methods (bottom) Spectrogram of do-re-mi vocal scale.
	Figure 10. Plotting real-world CO2 data from the Mauna Loa data reveals problems with missing data (left) and a need to transform seasonal variations (right).

	Challenges
	Outcomes
	Conclusion
	References
	10

	Teaching Computer-Aided Drug Design Using TeachOpenCADD
	Abstract
	Introduction
	TeachOpenCADD Platform
	Figure 1. Structure of each lesson in TeachOpen CADD, exemplified by talktorial T002 that explores ADME and lead-likeness criteria for filtering molecule data sets. (1) Aim of the talktorial, including content and references, (2) Theory, (3) Practical with code examples, (4) Discussion, and (5) Quiz. Figure is adapted from [20, Fig. 2] (published under a CC-BY-4.0 license) and contains screenshots of TeachOpenCADD talktorial T002 (published under a CC-BY-4.0 license) taken directly from the Jupyter Notebook (published under a 3-clause BSD license).

	Training Material
	Computational Concepts and Resources
	Figure 2. Overview of TeachOpenCADD talktorials, covering data acquisition (blue), cheminformatics (green) and structural bioinformatics (orange) topics. The first 10 talktorials have been published in 2019 20, while another 10 talktorials are work in progress and will be released in 2021 (dotted boxes). Figure is adapted and extended from [20, Fig. 1] (published under a CC-BY-4.0 license).

	Compound Databases
	Figure 3. Overview of the goal and practical programming tasks of TeachOpenCADD talktorial T001 (published under a CC-BY-4.0 license) is displayed alongside coding examples taken directly from the Jupyter Notebook (published under a 3-clause BSD license).

	Compound Descriptors
	Compound Similarity
	Compound Activity Prediction
	Compound Substructures
	Structural Bioinformatics – A Glimpse
	Python Programming
	Python Introduction
	Data Science Introduction
	Best Practices Introduction
	Training Settings
	General Classroom Setting
	Figure 4. Proposed training settings for classrooms with different levels of complexity based on the students’ background (low, intermediate and high complexity indicated by the light green/blue boxes): In the orientation phase, the teacher introduces the students to programming, assigns TeachOpenCADD talktorials and defines tasks (a-c). The students work on their tasks during the hands-on phase (d) and present their results in the presentation phase (e).

	Orientation, Hands-On, and Presentation Phases
	Orientation Phase
	Hands-On Phase
	Presentation Phase
	Levels of Complexity
	Low Complexity
	Intermediate Complexity
	High Complexity
	Bioinformatics Seminar Setup
	Individual Student Projects
	Self-Study Setting
	Lessons Learned When Using the TeachOpenCADD Material
	Installation and Setup: Reduce Entry Barriers
	Establish Conventions
	Review Student Work in a Programmatic Way
	Experiences from Courses with Different Backgrounds
	Conclusion
	Acknowledgments
	References
	11

	Coding, Software Engineering, and Molecular Science − Teaching a Multidisciplinary Course to Chemistry Graduate Students
	Introduction
	Course Design
	Figure 1. A function for computing the distance between 3-dimensional points written in three different ways – a.) Using standard Python. b.) Python using NumPy. c.) C++. The NumPy version can operate on arrays of points and return an array of distances rather that operating on only one set of points at a time.
	Figure 2. Typical performace of the different versions of the Monte Carlo code that will be observed by students completing the benchmarking final project. The algorithm is expected to scale linearly with respect to the number of steps. The version using the Python Standard Library (far-left bar of each group) is by far the slowest. The NumPy version and the unoptimized C++ version are comparable and approximately 16-17x faster than the standard library version. Using compiler optimization (level 3, far right bar of each group) is approximately 3x faster than the unoptimized version. Timings are an average of three runs of instructor code. The C++ version was compiled with GCC 10.2.0, and Python 3.8 was used for the Python code.
	Figure 3. This figure illustrates results that can be obtained using the Monte Carlo code written in this class. A) – Comparison of results from simulation of a Lennard Jones fluid converted to real units to behavior obtained for Argon from the NIST WebBook. The temperature for this figure is 108K. B, C) – Radial distribution functions showing different phase behavior (gas vs liquid) obtained from the MC code for various simulation temperatures and densities.

	Course Objectives
	Molecular Science
	1 Introduce molecular simulation methods.
	2 Students should be able to explain the concept of potential energy functions.
	3 Students should understand analyzing molecular coordinates to measure the properties of chemical systems.
	Programming
	1 Students should be able to explain the difference between interpreted and compiled programming languages.
	2 Students should understand the Python Standard Library’s use and the advantages of using external libraries like NumPy.
	3 Students should learn the basic syntax and use of the C++ programming language.
	Software Engineering
	1 Students should be able to explain the concept of version control and keep a history of their project using the version control software, git.
	2 Students should understand manual validation of code and eventually use a testing framework to write a test suite for their software.
	3 Students should be able to document their code using in-code documentation strings.
	4 Students should be able to use GitHub to collaborate with their classmates on projects.
	Course Assignments
	Classroom and Assignment Management
	Challenges and Student Feedback
	Accessing Course Materials
	Recommended Skills
	Acknowledgments
	References

	Editors’ Biographies
	Ashley Ringer McDonald
	Jessica A. Nash

	Indexes
	Author Index
	Subject Index
	C
	P
	R
	T
	U

