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Computational molecular science, including computational chemistry, programming, data science,
and machine learning, has become a cornerstone of chemistry research, but traditional,
undergraduate chemistry curricula spend little-to-no time developing these skills in early career
chemists. The most common best-case scenario has students using computational chemistry tools
with a few exercises in a physical chemistry course. Many degree programs have no exposure
whatsoever for students to using computational tools or programming. In either case, a large issue
precluding uptake of this medium as both a skill and educational tool is a matter of access to and
administration of quality hardware, user-friendly software packages, and correspondingly robust
student exercises. Additionally, computation can offer a “dry” alternative for a benefit wet laboratory
provides in chemical education: a means by which to reinforce conceptual learning through tangible
experience with the phenomena being studied. To this end, the PSI4EDUCATION community
utilizes the free and open-source PSI4 quantum chemistry package, Python and Jupyter Notebooks,
and the WEBMO graphical user interface to facilitate the growth and utilization of computational
molecular science in the classroom. Additionally, the community has pioneered the use of cloud-
based computing for student access, software hosting, and quantum chemistry program execution.
This promises to create a plug-and-play environment with little overhead work for the instructor
and costs below the level of most consumables in a traditional chemistry laboratory exercise.
PSI4EDUCATION is continuously growing our resource database through contributions from the
larger chemistry education community, and dozens of exercises have thus far been developed. In this
narrative, the utilization of programming via Jupyter Notebooks within chemistry education takes
focus. Examples of current activities discussed herein include analysis of bond breaking, exploration
of the Hartree-Fock procedure, and initial forays into machine learning applications to chemistry.
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Introduction

Computing, and the technical skills needed to fully utilize it, are driving nearly every aspect
of modern commerce including research and development. However, few chemistry undergraduate
degree programs have been able to meet this need in their curricula due to the already heavy
knowledge load expected of competent B.S. chemistry majors ranging from proficiency in the four
(five) areas of chemistry to instrumentation utilization to generic laboratory safety (1). On top of this,
the standard undergraduate chemistry course sequence is largely built around historical traditions
and professional school demands (2–5). Hence, the current education of chemistry students is
providing them with 20th century skills for a 21st century workplace. Tools to shift this are emerging,
but educators must invent creative ways or utilize existing means developed by our professional
colleagues to fill this knowledge gap in computer skills, a gap that is growing exponentially with each
successive graduating class of chemistry majors.

Previous efforts to include exposure to computational tools within the chemistry curriculum
have largely originated within the physical chemistry community. This is partly due to the nature of
the subdiscipline itself as highly mathematical in nature and partly due to the bent of those who call
themselves physical chemists. MATLAB, Mathematica, and Microsoft Excel are far superior tools for
doing difficult computations involving integration by parts or considerations of a particular partition
function than paper and pencil work alone. Computational tools can also aid in bridging conceptual
connections across subdisciplines as students try to become proficient in the four (five) areas of
chemistry (6–9), as cross-discipline connections are important to overall undergraduate curricula
(5, 10–14). Quantum chemical computations built on compiled imperative programming languages
have also become nearly required companions for experimental research publications. While the
implementation of both types of computer skills (mathematical analysis and computational
chemistry) are now fairly routine within upper-level physical chemistry courses (15, 16), even these
skills within chemistry majors are slowly receding from the forefront of needs within the modern
chemical workforce (17).

The emerging need is for chemists of all disciplines to be able to construct their own
computational tools in order to push research forward (1, 18). This requires programming. The
physics community has required programming competency of its practitioners, even those who
consider themselves experimental physicists, for decades. Chemists cannot neglect this set of skills
any longer (19).

The analytical and experimental physical communities of chemists have been requiring graphical
programming (often through software such as LabVIEW) and Unix-based operating system
competency for some time now (20) in addition to the eternal need for programming within
theoretical chemistry. However, the experimental organic chemist must now be able to construct
numerical analyses in many cases in order for their data to be interpreted in novel ways (21).
Anecdotally, recent work by one of these authors provided a relatively simple tangent line analysis
program (22) to the organic solar cell community that promises to reduce analysis time and error
by as much as 5%, a major amount in a field with big dollar applications on the line. Had an
experimental, synthetic organic chemistry graduate student had these skills, such a need would not
have been left unmet for so long.

Such examples are myriad, but the largest barrier to providing generic chemistry students with
programming skills does not lie with desire on our part as educators. Time to cover such material in
class or laboratory, time to learn programming skills ourselves, and time to construct and evaluate
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meaningful exercises is often in short supply. However, the PSI4EDUCATION team has been
developing these types of tools to produce 21st century skills in 21st century chemistry students.
These tools and exercises for the students do not require a significant overhaul of the existing
chemistry curriculum, but they should be implemented throughout the curriculum. Naturally, they
often start in physical chemistry, but they should not be limited to that subdiscipline.

PSI4EDUCATION

Figure 1. PSI4EDUCATION Logo.

PSI4EDUCATION (Figure 1) is the education and outreach arm of PSI4, a free, open-source,
quantum chemistry software package (23, 24). PSI4EDUCATION provides a suite of free, open-
source lab and classroom activities for use in courses across the undergraduate chemistry curriculum
(https://psicode.org/posts/psi4education/). These activities utilize PSI4 as a quantum chemistry
engine, PSI4NUMPY (an interactive quantum chemistry programming environment) (25), PSIAPI
Jupyter Notebooks (26), and WEBMO (27). A major goal of PSI4EDUCATION is to increase
student exposure to scientific programming and help students learn chemistry concepts through
computational resources. While the PSI4EDUCATION consortium has been previously discussed
in the literature (16), this particular chapter will focus on the developments made in the past six years,
specifically in the realm of including programming and computational problem solving for chemical
applications.

Some base knowledge Python scripting skills are required as a prerequisite for many of the
PSI4EDUCATION activities. Many B.S. chemistry majors do not take a programming course as a
requirement of their degree; instead, this base knowledge must also be incorporated into the current
curriculum. The Molecular Sciences Software Institute (MolSSI) (28) funded by the NSF provides
a series of free lessons on “Python Scripting for Computational Molecular Science (29)” which can
aid students in building the required prerequisite skills. Of note, lessons 1, 4, and 5 together cover all
the prerequisite skills needed for all the PSI4EDUCATION activities including assigning variables,
importing libraries, loops, logical expressions, etc. Additionally, the use of Jupyter Notebooks lowers
the barrier to getting the students comfortable in a coding environment. A Jupyter notebook is a
web application that allows the creation of documents with executable code, rich text formatting,
and widgets. Use of a Jupyter notebook removes the need for the student to worry about remote
connections and job submissions, and it lets the student focus more on learning chemistry through
the use of programming.

Another major goal of PSI4EDUCATION is to decrease barriers of chemistry educators
implementing computational educational resources in classrooms. Often, a chemistry department
does not have a faculty or staff member that can dedicate the time and energy needed to manage a
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server to host many traditional computational chemistry resources. This is especially true at primarily
undergraduate institutions (PUIs) and community colleges. PSI4EDUCATION utilizes many
partnerships and options to make implementing the activities as plug-and-play as possible without
the need of a dedicated, local server or workstation. Additionally, WEBMO and PSI4 can be installed
on Google Cloud, removing the need for any local maintenance at a minimal cost. For the PSIAPI
Jupyter Notebook activities, PSI4EDUCATION has partnered with the Chem Compute Science
Gateway (ChemCompute; https://chemcompute.org/) (30) to offer free computational resources
without the need to install or configure any software or hardware.

Figure 2. List of the currently available exercises organized by the framework used (WebMO and PSIAPI).
More details can be found on the PSI4 website (https://psicode.org/posts/psi4education/).

Through the PSI4EDUCATION PSIAPI activities utilizing Jupyter Notebooks, a breadth of
scientific programming experience can be exposed to students. As would also be expected in a
foundational programming course, students gain experience with program data types, logical
expressions, and data manipulation. However, in addition to these experiences, these activities also
include many computational science packages such as NUMPY, SciPy, Matplotlib (31), and scikit-
learn. All of this is couched within standard chemical applications giving students a more familiar
environment for developing their programming skills while working through these chemical
problems with new skills. A list of the currently available exercises is given in Figure 2; this delineates
which exercises use WEBMO and which exercises use PSIAPI. A complete list of the exercises
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along with learning objectives and implementation details are available on the PSI4 website
(https://psicode.org/posts/psi4education/).

Example Activities

Three specific PSI4EDUCATION activities are highlighted which provide a means of teaching
programming within the chemistry curriculum. Each has been developed by different groups and
have been implemented in at least one instance. On the PSI4 website where the PSI4EDUCATION
materials are hosted, learning outcomes, time to complete the assignments, and other educational
metadata are available for any and all of the exercises provided. We begin this sampling of developed
exercises with bond breaking, one of the most fundamental processes in chemistry.

Bond Breaking

This activity introduces students to concepts intrinsic within diatomic molecular dissociation.
Namely, many theoretical models fail to predict the correct behavior of diatomics at long separation
distances, and thus, this PSI4EDUCATION activity investigates the bond-breaking reaction in the
H2 molecule. The exercise could be used in an advanced general chemistry course, a physical-organic
course, or physical chemistry course.

The exercise begins by introducing the PSIAPI via a set of single-point energy calculations. The
student then uses Python functions to generate multiple calculations and parse their results. For
example, running jobs for various bond distances simply requires using a loop in which a new line
replaces the separation between fragments. Beyond providing quick access to data, one of the most
appealing attributes of this activity is its focus on visualization despite being a programming-based
exercise. The exercise requires critical thinking about the orbitals. Immediately plotting the orbitals
is a critical element in understanding the differences in the calculations. The orbitals can be plotted
in various plotting libraries such as Matplotlib or Plotly (32) mentioned above. The addition of plots
turns a dry mathematical demonstration into an interactive and visually striking proof (Figure 3).
The MolSSI has recently developed a tutorial describing how to generate impactful and aesthetically
pleasing plots (33).

Figure 3. 6-31G** Potential Energy curves for H2 generated using Matplotlib.
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The student analyzes the plots and energies in order to determine differences in how bonds
may be represented. For example, Hartree-Fock and density functional theories model bonds in
different ways that are appropriate at the equilibrium geometry, but will produce spurious results for
longer internuclear distances. The student uses coupled-cluster theory to generate an exact result to
compare other methods against it. Restrictred and unrescrited references are introduced in order to
address the previously described unphysical behavior of the Hartree-Fock solution. A way to visualize
the dissociation problem is to plot the orbitals at the stretched geometry. This asymmetry is only
captured by the unrestricted model (34) (Figure 4). Instead of dealing with separate calculation and
visualization software, this activity lets the student do all the work in the same environment. The
tasks of generating atomic orbitals, adding them to generate particular solutions, and visualizing them
can be done in successive cells with ease. Furthermore, every parameter including the method of
calculation, basis set, and atoms used can be easily modified allowing the student to try different
settings and see the effects immediately. Tools like this are present in all of PSI4EDUCATION’s
activities, and they give the students firsthand exposure to every part of a calculation.

Figure 4. Alpha molecular orbital of the RHF and UHF solutions for the stretched H2 visualized using a)
Matplotlib and b) Moly (35), a molecular library built on top of Plotly.

Student Learning Outcomes

The instructor version of the exercise provides information about the activity scope, required
student prerequisite knowledge, an expected schedule, and student learning objectives (SLOs).
Upon completing this activity, students are expected to be able to:
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1. Valuate different computational methods for bond breaking.
2. Compare restricted and unrescrited references.
3. Benchmark these results with respect to results from coupled-cluster theory.
4. Visualize molecular orbitals using plotting libraries.

Hartree-Fock Self-Consistent-Field Theory

Hartree-Fock theory and its self-consistent-field (SCF) formulation are the cornerstone of
wavefunction-based electronic structure theory, enabling understanding of both chemical bonding
and molecular structure in terms of chemically meaningful molecular orbitals constructed from a
linear combination of atomic orbitals (LCAO-MO). Despite the discussion of LCAO-MO theory
in an inorganic chemistry course, both the mathematical and technical details necessary to develop
Hartree-Fock theory and implement it into working computer code are generally considered to be
outside the scope of an undergraduate chemistry curriculum. However, by leveraging the interactive
Jupyter notebook programming environment, a dry laboratory exercise has been developed to
introduce the basics of HF theory and its implementation in the Python programming language,
which is accessible at the undergraduate level using PSIAPI and the PSI4NUMPY quantum
chemistry programming framework.

This activity, entitled “Hartree-Fock Self-Consistent-Field Theory,” is broken into three main
sections, comprised of both conceptual discussion and interactive exercises, which, taken together,
guide students through the theoretical and technical considerations necessary to implement a HF-
SCF code. This approach allows the activity to stand alone, with no need for students to complete
other activities as a prerequisite (even though PSI4EDUCATION does offer, e.g., a detailed activity
in linear algebra), as well as allowing for only certain sections to be assigned at the instructor’s
discretion. Below, each of these sections will be briefly discussed, with regards to their motivation
and content, before finally discussing the SLO for the activity as a whole.

Primer: The Hydrogen Atom & Hartree-Fock Basics

Aside from the technical details of the Hartree-Fock procedure itself, the need for approximate
computational methodologies is itself a conceptual hurdle that students must overcome. In order
to familiarize students with performing such computations, this exercise begins by referencing the
exact, quantum mechanical description of the hydrogen atom, compared with the energy computed
by the Hartree-Fock procedure as provided by PSI4. In this manner, the concept of an approximate
quantum chemistry approach is connected to the act of performing a computation with PSI4,
allowing students to reinforce dynamically their learning while introducing the HF-SCF approach.
Next, in order to implement a Hartree-Fock code, students must be familiar with the form of the
Hartree-Fock equations. While the derivation of these equations has been treated in significant detail
elsewhere (34), this is usually presented at the graduate level, and, as such, is beyond the scope of this
activity. Instead of focusing on the derivation, therefore, the SCF equations are directly presented
before spending time discussing the quantities which comprise them (e.g., the Fock matrix, F).
Finally, this section provides a “blueprint” for the rest of the exercise, which prompts students
to anticipate their learning, a key step in metacognition that has been shown to increase learning
retention and understanding (36, 37).
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Figure 5. Brief overview of linear algebra concepts and Dirac notation in the Hartree-Fock activity.

Review of Mathematical Concepts

The largest challenge for students when learning Hartree-Fock theory, and indeed in the study
of quantum mechanics in general, is its mathematical complexity. In particular, Hartree-Fock theory
relies both on variational calculus for its derivation and linear algebra concepts for its self-consistent-
field formulation, with which most undergraduate chemistry majors will be unfamiliar. In order to
meet the need for students to have a sufficient working understanding of these mathematical tools to
fully engage with this activity, a review of relevant mathematical concepts is included. This includes
a brief discussion of normalization, orthogonality, and basis sets, as well as Dirac notation (Figure
5). Once these concepts and notation are introduced, students complete a few short exercises which
reinforce this conceptual knowledge with the skills of performing vector operations in Python using
the NUMPY library.

Even though Hartree-Fock is a two-particle theory, where all relevant quantities can be
represented as rank-2 arrays (i.e., matrices), the resulting matrix equations can be challenging to
conceptualize directly, and, in turn, implement in computer code, even for students who have had
formal training in linear algebra. This is especially true for the formulation of the Fock matrix,

where H is the one-electron core Hamiltonian matrix, and J, K are the Coulomb and exchange
matrices, respectively. To form the Coulomb and exchange matrices, tensor contractions
(generalized matrix-matrix products between two or more multidimensional arrays) must be
performed between the rank-4 electron repulsion integrals and the density matrix, D.
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In order to simplify these equations for students with whom linear algebra may be unfamiliar,
the addition of another layer of abstraction is useful to the discussion of linear algebra: introducing
the Einstein summation convention for denoting tensor contractions. In the Einstein convention,
repeated indices are assumed to be contracted over, simplifying the notation for defining, e.g., J and
K.

On the surface, introducing this convention may seem to be a trivial simplification; however,
thanks to the NumPy library function, numpy.einsum(), tensor contractions written in the Einstein
summation convention can be directly translated from symbolic notation to executable computer
code with a single command.

This ease of translation between symbolic mathematical expression and computer code is the
heart of the PSI4NUMPY quantum chemistry programming framework, which is used heavily in this
exercise. Therefore, a brief primer on Einstein summation convention is included in this section so
that students are familiar with it in advance of its use below.

Hartree-Fock Self-Consistent-Field Procedure

After students’ understanding of mathematical and notational details has been reinforced in
the sections above, they are finally ready to move on to implementation of their own Hartree-Fock
program. This begins by using PSI4 through the PSIAPI application programming interface to read
in a molecule and relevant basic quantities, such as the atomic orbital basis set. Next, students
are guided through the use of PSIAPI and the examination of the atomic orbital (AO) basis set
through the real AO overlap matrix, S, in analogy to the analysis carried out above in the review of
linear algebra. Students are then prompted to verify that this “real” basis set is not orthonormal.
Students are guided to construct a transformation matrix which is used to orthogonalize the AO
basis set and simplify the Hartree-Fock equations into a genuine eigenvalue equation rather than a
pseudoeigenvalue equation. Once the basis set has been orthogonalized, the next step in the SCF
procedure is to build an initial guess for the Fock matrix. While many such guesses exist, the simplest
such quantity, the core Hamiltonian matrix, is utilized herein before diagonalizing this guess Fock
matrix to obtain guess orbitals and electron density. Next, the Coulomb and exchange matrices are
constructed using these guess orbitals before students compute the Hartree-Fock energy for their
guess wavefunction. Finally, students implement the SCF iterations using each of the previous steps
as a template, reinforcing their learning while simultaneously challenging them to think about the
iterative nature of solving the coupled Hartree-Fock equations.
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Student Learning Outcomes

The instructor version of the exercise provides information about the activity scope, required
student prerequisite knowledge, an expected schedule, and SLOs. Upon completing this activity,
students are expected to be able to:

1. Recognize that the AO basis is not orthonormal and must be transformed.
2. Transform from one basis to another using a transformation matrix.
3. Recognize the iterative nature of the HF procedure.
4. Define convergence and use convergence criteria in a self-consistent procedure.
5. Compute MO energies and coefficients by diagonalizing the Fock matrix.

Machine Learning

In the six years since PSI4EDUCATION was first introduced, the use of machine-learning
(ML) applications in the physical sciences has increased exponentially (38–40). Naturally, chemists
have begun utilizing these techniques in increasingly complex and successful ways. While the
underpinnings of ML are fundamental concepts with which B.S. chemistry majors are undoubtedly
familiar, such as regressions and statistics, ML techniques are often seen as “magic” by the broader
community. This is usually due to a combination of esoteric vocabulary and a liberal application
of pre-built scientific software packages. As with many mathematical concepts, the understanding
afforded by live, hands-on experience cannot be overstated. The complicated workflows involved
in state-of-the-art ML research preclude the possibility of reproducing these models by hand in an
undergraduate setting. With guidance, however, a programming package such as scikit-learn (41)
offers a quick way to both rationalize and experiment with basic ML models.

The ML activity offered in PSI4EDUCATION, titled “Machine-learning applications in
computational chemistry,” does not aim to teach a student all of the aspects of ML. Instead, the
focus is on teaching the student how to build, evaluate, and refine a ML model. One case study
employed in the exercise is in predicting the potential energy surface (PES) of the symmetric stretch
in a water molecule. Through this, the concepts of training sets, linear regression, and molecular
representations are introduced, while scikit-learn (a Python module which implements a wide range
of ML techniques) handles the optimization of the model parameters. A particular focus is given
to the generation of molecular representations, which encode the pertinent molecular information
and serve as the input to the ML model, which is an often overlooked detail (42, 43). The student
is presented with questions regarding the form and function of the Coulomb matrix representation
(44), show below. This simple two-particle representation requires only the atomic numbers (Z) and
bond distances (rij) between every pair of atoms.

By training a simple linear regression model (which is not expected to perform admirably),
the student is given an example of one of the key ideas in ML research: testing and improving
upon a model. Additional flexibility and non-linearity are achieved through the popular kernel ridge
regression (KRR) model, where the representations are used to generate a covariance matrix called a
kernel (specifically, the radial basis function kernel) (45, 46). This model reproduces the surface to
within milliHartree accuracy (Figure 6).
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Figure 6. H2O symmetric stretch PES, calculated using ab initio simulation (“Truth”) and a KRR model
(“ML”).

Once again, the use of scikit-learn allows the student to bypass the linear algebra and
implementation of the method and optimization routines needed to switch to this model, requiring
only the understanding that a non-linear model with more flexibility is expected to perform better in
an ML application. Armed with an effective routine for learning the symmetric stretch, the student
is tasked with repeating the process for predicting the hypersurface of simultaneous O–H stretching.
The student is encouraged to decide their own method for choosing training points and evaluate their
performance relative to the canonical Hartree-Fock surface, which is computed for comparison.

Finally, a larger-scale application of the KRR model is demonstrated. Atomization energies
are taken from a subset of the ANI-1 dataset (47, 48), a collection of calculated thermochemical
data spanning more than 50,000 small organic molecules in over 20 million conformations. The
students are asked to apply the KRR model to predict the atomization energies of some of these
molecules from a set of pre-computed Coulomb matrices. This exercise is adapted from the ML
tutorial provided by the MolSSI for the QCArchive project (49) and constitutes an example of a
“real-world” scenario. In the PSI4EDUCATION exercise, the student can see the organization of
a large database, as well as probe the chemical diversity of the dataset through visualization inside
the Jupyter notebook. Performance is plotted in a violin plot, and the student is asked to judge the
efficacy of the model based on the reported error statistics.

Student Learning Outcomes

This exercise should serve to lower the barrier for introducing students to different ML
applications in chemistry. The activity is intended for students familiar with the concept of
atomization energies and the general PSI4EDUCATION requirements, but a deep understanding of
the underlying theoretical chemistry is not required by design. This makes the activity appropriate for
any undergraduate students beyond the general chemistry level but may include advanced sections
of general chemistry. The instructor version of the exercise provides information about the activity
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scope, required student prerequisite knowledge, an expected schedule, and SLOs. Upon completing
this activity, students are expected to be able to:

1. Summarize basic ML concepts, such as training sets and parameter optimization.
2. Design geometry-based molecular representations.
3. Apply basic ML techniques across two- and three-dimensional potential energy surfaces.
4. Utilize large databases for the prediction of chemical properties.
5. Relate how the application of ML can facilitate chemical research and development.

Conclusions

PSI4EDUCATION promises to develop students’ programming skills as a tool for reinforcing
chemical concepts and giving them new skills to solve chemical problems. Additionally, the exercises
developed by this group lower the barrier to implementation since the educator does not have to
develop these activities in isolation. Additionally, contributions from the education community are
welcome in order to expand the footprint of PSI4EDUCATION. The described activities in this
narrative highlight principle chemical modeling (bond breaking and Hartree-Fock) and emerging
trends in chemical research (machine learning). However, these can be easily applied to organic
chemistry (21), analytical chemistry (6), and even general chemistry (16). While the core team is
continually adding to the database of exercises, the culture of the PSI4 community at large is one
of inclusion, external contribution & development, and provision of open-source materials. Hence,
PSI4EDUCATION is also a platform for development and distribution of educators’ novel ideas
for cutting-edge chemistry education. PSI4EDUCATION has evolved since its inception nearly a
decade ago, and further developments are welcome with new ideas from educators with expertise
across the chemical sciences.
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